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Follicular lymphoma (FL) is a clinically

and molecularly highly heterogeneous

disease. Most patients achieve long-

lasting remissions and have excellent

overall survival (OS) with current treat-

ment. However, ∼20% of patients have

early progression of disease and short

OS. At present, therapies are not guided

by individual risk or disease biology.

Reliable tools for patient stratification

are urgently needed to avoid overtreat-

ment of low-risk patients and to prioritize

alternative approaches in high-risk pa-

tients. A rapidly expanding repertoire of

promising therapeuticoptions is available

for clinical evaluation; however, the num-

bers of patientswith FL and the resources

to conduct adequately powered trials are

limited. Recent studies have shown that

gene mutations can serve as prognostic

and/or predictivebiomarkers, in particular

when integrated into composite risk mod-

els. Before translating these findings into

routine clinical practice, however, several

challenges loom. We review aspects of

“clinicogenetic” risk model development

and validation that apply to FL and more

generally to other cancers. Finally, we pro-

pose a crowdsourcing effort that could

expedite the development, validation, re-

finement, and selection of risk models.

A new era of collaboration and harmoniza-

tion is required ifwehope to transition from

empiric selection of therapeutics to risk-

based,biology-guidedtreatmentofpatients

with FL. (Blood. 2017;130(13):1491-1498)

Introduction

Follicular lymphoma (FL) is among the most common non-Hodgkin
lymphomas worldwide, accounting for approximately one-quarter of
new cases in the United States and Europe.1,2 It may well be the most
prevalent of all non-Hodgkin lymphomas, due to its longnatural history
and lowcure rates.FL is a prototypical indolent lymphoma, andmedian
overall survival (OS) now exceeds 18 years with modern treatments.3

At the same time, FL is a highly heterogeneous disease, and a subset of
patients has remarkably poor outcome.4,5

Less thanone-quarter of patients presentwithnonbulky, limited-stage
disease. Both the National Comprehensive Cancer Network6 and Euro-
pean Society for Medical Oncology7 recommend radiotherapy in these
patients with curative intent. However, only one-half who undergo ra-
diotherapy achieve long-term remissions, and comparable outcomes
have been reported with observation or single-agent rituximab.8,9

The remainingpatients are diagnosedwith advanced-stageorbulky,
limited-stage disease and are still considered incurable with conven-
tional therapies.10,11 Patients with asymptomatic disease may not need
treatment for several years. We cannot reliably predict whether or
when individual patients will progress to the point where treatment is
required. Even among patients who require immediate treatment due to
symptomatic, rapidly progressive, and/or large burden disease, clinical
course remains highly variable. Currently, these patients uniformly
receive immunochemotherapy.12 The specific choice of treatment
regimen, administration ofmaintenance and/or consolidation, and even
disease monitoring are largely driven by center/physician preference
rather than by individual risk or disease biology. Although lamentable,
this is not unreasonable, as no approach has clearly demonstrated
the ability to prospectively and reliably identify patients who will ex-
perience either early progression of disease, which we define here as

within24months after immunochemotherapy (POD24)4,5 or histologic
transformation to aggressive lymphoma.13

Clearly, reliable tools for patient stratification are urgently needed
to both avoid overtreatment of low-risk patients and to select high-
risk patients for novel strategies. A formidable repertoire of promising
therapeutic options is available for clinical evaluation in patients with
FL.14 Resources to conduct adequately powered studies with sufficient
follow-up are limiting, as are the numbers of patients with FL willing
to participate in clinical trials. Stratification of patients by individual
risk and disease biology will be crucial to adequately address distinct
clinical priorities, define suitable study end points, interrogate indi-
vidual treatment strategies, and conduct strata-tailored translational
research (Table 1). Here, wewill discuss the promises and challenges
of integrating gene mutations into clinically applicable stratification
algorithms for patients with FL. The same concepts are largely appli-
cable to other assays capturing, for example, genomic, epigenomic,
transcriptomic, proteomic, metabolomic, or microenvironmental alter-
ations, as well as diseases other than FL.

Gene mutations as prognostic/predictive
biomarkers

FLs frequently harbor mutations not only in genes that encode for
epigenetic modifiers (including KMT2D, CREBBP, EP300, and
EZH2), but also in genes encoding for transcription factors,
kinases, and other signaling molecules (supplemental Table 1,
available on the Blood Web site).15-27 To some extent, FL is a
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genetically homogeneous disease: ;90% of cases harbor translo-
cations involving BCL2, 80% have loss-of-function mutations of
KMT2D, and 80% have mutations of CREBBP or its homolog
EP300. On the other hand, hundreds of additional recurrent gene
mutations have been reported in FL, which are likely to have
distinct implications on the biology28-40 and the clinical course41-49

of the disease (supplemental Table 1).
In the following sections, we discuss the use of gene mutations as

biomarkers, which can be either prognostic, or predictive, or both.
Conceptually, prognostic biomarkers predict patient outcomes inde-
pendent of treatment, whereas predictive biomarkers predict the effects
from a specific treatment in biomarker-positive patients compared
with biomarker-negative patients.50 Making the distinction between
prognostic and predictive requires formal statistical testing (interaction
analysis) of at least 2 comparison groups, however, such testing for
gene mutations in FL is pending.

Single-gene mutations

Mutations in a few individual genes have been associated with treatment
outcome among patients with FL. Most notably, TP53 mutation
predicted inferior outcome both in the prerituximab51 and rituximab

eras.41 In unselected patient cohorts,TP53mutations are present in,5%
of patients at initial diagnosis. Consistent with their adverse effect on
prognosis, TP53 mutations were found to be enriched in patients with
early progression of disease5,52 or histologic transformation.22,47,48,52

The histone methyltransferase EZH2, which functions as the cata-
lytic subunit of the polycomb-repressive complex 2 (PRC2), has been
identified as both a biomarker and therapeutic target. Mutations in
EZH2 (primarily affecting residueY641) are present in approximately
one-quarter of all FLs at initial diagnosis.19,53 Heterozygous EZH2
mutations are gain of function by increasing trimethylation of histone
H3 lysine 27 (H3K27me3),33 an epigenetic mark of repressed gene
expression,whichpromotes lymphomagenesis invivo in combination
withBCL2overexpression.35EZH2mutations have been consistently
associated with favorable treatment outcome in studies of homoge-
nously treated patients who received frontline immunochemotherapy
for advanced, symptomatic FL. Analyses from both the PRIMA trial
and the Lunenburg Consortium demonstrated that EZH2 mutations
were associatedwith improvedoutcome.43,45 Interestingly, thePRIMA
study also suggested that caseswithEZH2 copy number gains, although
less frequent, harbor transcriptional profiles and have treatment out-
comes highly similar to EZH2-mutant cases.43

Table 1. Proposed strategies for clinical trials in patients with untreated advanced-stage FL

ASH, American Society of Hematology; CPC, common progenitor clone; ctDNA, circulating tumor DNA; CR30, complete response rate at 30 mo; ddPCR, digital droplet

PCR; EFS12/EFS24, event-free survival at 12/24 mo; EHA, European Haematology Association; FFS, failure-free survival; FL, follicular lymphoma; NGS, next-generation

sequencing; OS, overall survival; PFS, progression-free survival; POD24, progression of disease within 24 mo; QoL, quality of life.
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The data for other single-gene mutations as biomarkers are more
controversial (supplemental Table 1). For example,mutations affecting
TNFRSF14 at initial diagnosis were associated with shorter survival
in nonuniformly treated patients in one study46 but not in others.45,49

Also, coding sequencemutations inBCL2were associatedwith shorter
survival in one study42 but not in others.41,44BCL2mutationswere also
suggested as a surrogate marker for activation-induced cytidine de-
aminase (AID)–mediated genetic instability, which may predict an
increased risk of histologic transformation.42

Integrating multiple-gene mutations into composite risk models

In contrast to individual gene mutations, combining multiple-gene mu-
tations into risk models could capture the complex and interdependent
interactions between distinct gene mutations, which are still largely
unknown. Multivariate modeling allows for the integration of gene
mutations, even if univariate testing did not indicate a statistically robust
effect on treatment outcome (and vice versa). Furthermore, composite
riskmodels can integrate additional variables; these could include clinical
factors (like those in the Follicular Lymphoma International Prognostic
Index [FLIPI] or performance status), germ line polymorphisms, disease-
related alterations (eg, in DNA copy number, the epigenome, tran-
scriptome, proteome, ormetabolome), microenvironment-related factors
(eg, cytokinemilieu, abundanceof tumor cells, or infiltrating immunecell
subsets), or as yet unidentified factors.

In 2015, we published a clinicogenetic risk classifier called the
m7-FLIPI, which integrates the mutation status of 7 genes, the FLIPI, and
Eastern Cooperative Oncology Group (ECOG) performance status. We
beganbygenotypingsamplesformutations in74genes recurrentlymutated
in FL and then generated a multivariate model irrespective of the results
from univariate testing. Applying the m7-FLIPI to individual patients
involves genotyping of the 7 genes for nonsilent mutations that occur at a
variant allele frequency (VAF) of 10% or more. The cumulative risk
score is calculated by adding individual predictive weights that either
increase (mutations in EP300, FOXO1, CREBBP, and CARD11) or
decrease (mutations in EZH2, ARID1A, andMEF2B) the cumulative risk
score. A predefined threshold for the cumulative risk score distinguishes
high-riskand low-riskpatients (online toolathttp://www.glsg.de/m7-flipi/).

The m7-FLIPI improved risk stratification for failure-free survival
(FFS)andOS41andwaspredictive forPOD245 inbothadiscoverycohort
of clinical trial patients and a validation cohort of nontrial patients who
uniformly received standard regimens of immunochemotherapy as
frontline treatment of symptomatic FL. Specifically, the m7-FLIPI
identified 22% (discovery cohort) and 28% (validation cohort) of pa-
tients ashigh-riskwith 5-yearFFS rates of 38%and25%, and5-yearOS
rates of 65% and 42%, respectively.41 The m7-FLIPI outperformed the
FLIPI alone in both cohorts and had a high specificity for POD24 (the
true negative rate was 79% and 86%, respectively).

The major shortcoming of the m7-FLIPI was that it only classi-
fied about one-half of patients with POD24 as high-risk. To specif-
ically address this, we generated a subsequent model, the POD24-PI
(POD24–Prognostic Index), which consisted of only 3 gene mutations
(EP300, FOXO1, and EZH2) along with the FLIPI. Although the
POD24-PI had higher sensitivity for predicting POD24, it came at the
expense of lower specificity.5 Thus, the combination of genemutations
and clinical factors improves prognostic accuracy beyond clinical
factors alone but, as one would expect, is not perfect.

Validation and exploration in addition cohorts

Validation of a prognostic algorithm within a single validation cohort
does not ensure that the algorithm is robust across a range of different

patient populations. However, it is important to clarify whether those
additional patient populations comply with the same definitions and
clinical end points used to establish the algorithm. For example, the
m7-FLIPI was developed and validated only in patients with FL grade
1, 2, or 3A, advanced-stage or bulky disease considered ineligible
for curative irradiation, and symptomatic disease requiring systemic
treatment. All patients received a combination of rituximab and
chemotherapy (either cyclophosphamide, doxorubicin, vincristine, and
prednisone [CHOP] or cyclophosphamide, vincristine, and prednisone
[CVP]) as frontline treatment, and were only analyzed if biopsies were
obtainedwithin 1 year of beginning treatment. The latter requirementwas
intended to minimize the confounding effects from any genetic drift that
might occur in untreated FL between the time of biopsy and the time of
treatment (eg, by aberrant somatic hypermutation54). The primary end
point was FFS, which is calculated from time of treatment initiation and
differs fromprogression-free survival (PFS) by also including insufficient
response (ie, less than a partial response) as an event; that was felt to
be most appropriate for patients with symptomatic disease in need of
treatment. We used exon-capture sequencing, paraffin-embedded tissue,
and a minimum VAF of 10% to call an individual mutation.

If the patient population and/or approach being tested in a subse-
quent assessment of the m7-FLIPI differs from these strict definitions,
then the question being addressed is not whether the m7-FLIPI
“passes” or “fails” validation. This distinction is not meant to keep
investigators fromexploring them7-FLIPI ondifferent types of cohorts
or using different approaches,which are important steps of assessing its
extendibility.

It goes without writing that validation studies and exploratory
analysesmust alsobe adequatelypowered.Figure 1 shows anomogram
visualizing the relationship between the hazard ratio (HR) of a given
risk model, the fraction of patients classified to be high-risk, and the
numbers of events required for adequate power. The requirement for an
adequate number of events (vs an adequate number of patients) has
a number of practical implications. A cohort may not be sufficiently
powered upon initial assessment but, with the accumulation of events,
becomes adequately powered (ie, there is no need to increase the cohort
size itself). Also, the known or expected HR of risk models may vary
with factors like the efficacy of the treatment regimen: the higher
the HR, the lower the number of events needed for validation studies,
and vice versa. And finally, the lowest number of events is needed
for cohorts with a 1:1 ratio of patients classified to be low- or high-risk
(Figure 1).

Krysiak et al recently published a study that significantly
expanded the catalog of recurrently mutated genes in FL.17 This
study also explored the m7-FLIPI in a clinically heterogeneous
cohort of 81 patients, of whom 58 received treatment within 1 year
of diagnosis. The m7-FLIPI reclassified almost one-half of patients
with high-risk FLIPI as low-risk by m7-FLIPI (7 of 16), and had a
HR for PFS of 1.9. The differences in patient population between
this cohort and those within the original m7-FLIPI publication41

indicate that the m7-FLIPI may retain prognostic ability across less
rigidly defined populations of FL. However, this study was not
sufficiently powered to reach statistical significance, so one could
inappropriately conclude that the m7-FLIPI “failed” to demon-
strate prognostic utility in this cohort.

At the 14th International Conference onMalignant Lymphoma
in Lugano (14-ICML), Huet et al reported on the performance
of clinicogenetic risk models in patients from the PRIMA trial.55

In patients who received immunochemotherapy followed by
rituximab maintenance, the m7-FLIPI had a HR of 2.9 for PFS
and outperformed the FLIPI (HR, 2.0), but not the FLIPI-2
(HR, 3.7).55,56
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Standardization and harmonization

Discrepancies across studies and failure to reproduce or validate
earlier findings may also be due to different technical and analytical
approaches. No consensus has been established as to the optimal
DNA isolation, sequencing, and analysis approaches. DNA from
formalin-fixed paraffin-embedded biopsy specimens is fragmented
and chemically modified, and can be challenging to sequence. Often,
matched germ line samples are not available to definitively distinguish
somatic from germ line variants. The tumor cell fractions in biopsies
may be low, which reduces the identification of subclonal variants.
Evolving data further indicate that a single biopsy is unlikely to fully
represent the spatial heterogeneity and clonal hierarchies of the dis-
ease,57whichcan furtheraffect the likelihoodofcapturingprognostically
relevant mutations.

Recent data suggest that genotyping of circulating tumor DNA
(ctDNA) could better capture mutational heterogeneity.58 Extensive
studies of sequencing ctDNA are needed (and several are under way)
to determine whether this approach will supplant more traditional
biopsies, which would also greatly increase the opportunity to serially
sample patients before, during, and after treatment. Minimally invasive
serial samplingof ctDNAhas tremendous clinical potential, including the
evaluation of genetic drift over time in untreated FL, treatment responses
and clonal dynamics, detection of residual or emerging treatment-resistant
subclones, and even detecting and predicting histologic transformation.58-61

Harmonization across institutions is essential for generating highly
reproducible and reliable approaches that are applicable to clinical
decision-making. Funding and other material support is needed to help
compare, optimize, and establish standards for patient specimens,
sequencing methods, and bioinformatic pipelines.

Linking mutation biology to risk

Them7-FLIPI was intentionally designed as a straightforward clinical tool,
and therefore gene mutations were integrated solely as binary variables

(ie, presence or absence of a nonsilent mutation). Classifying genes in this
binary fashion is an oversimplification that does not account for the
multidimensionality of available sequencing data. The location and type of
individual mutations, their presence as clonal or subclonal mutations, and
other factorsmay affect their weightingwithin clinicogenetic riskmodels.

1. Implications of mutation localization and type. The m7-FLIPI
is clearly biased toward genes harboring either mutational
hotspots, such as EZH2 (97% of mutations at Y641 or A677),
FOXO1 (90% in exon 1), MEF2B (100% within the N-terminal
domain), or CARD11 (80% affecting the coiled-coil domain),
or a distinct mutation type, such as primarily disruptive alterations
in ARID1A.41 In contrast, CREBBP harbors at least 2 different types
of mutations: the more common missense mutations clustered
within the histone acetyltransferase domain, and the less frequent
truncating mutations spread out across the whole coding region
(supplemental Figure 1). CREBBP acts as an epigenetic modifier
by acetylating not only lysine residues on histone 3 (H3), but
also nonhistone proteins such as TP53, BCL6, and FOXO1.16,62

Evolving data suggest that specific CREBBP mutations are
associated with distinct biology.20,32 It is possible that the different
types of CREBBP mutations are also associated with distinct clin-
ical outcomes, and that its comparatively low predictive weight in
the m7-FLIPI results from averaging these effects.

2. Implications of zygosity. Genes can harbor mutations in 1 or both
alleles, and also be affected by structural alterations (deletions,
amplifications, or rearrangements). The resulting (mutant) gene-
dosage effects can be functionally and clinically relevant. For
example, the tumor suppressor gene TNFRSF14 is frequently
affected by loss-of-function mutations (;20%-30% of cases)
and/or deletions of its chromosomal region at 1p36 (;20% of
cases).40 In 1 study, TNFRSF14 alterations were associated with
inferior outcome, and shortest survival was seen with combined
deletion and mutation of the remaining allele.46

3. Implications of clonality, molecular hierarchy, and mutational
ontogeny. In chronic lymphocytic leukemia, the presence of
subclonal driver mutations such as SF3B1 or TP53 has been
shown to be an independent risk factor for rapid disease

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Number of events

Ha
za

rd
 ra

tio

0.150.20.250.3

0.350.40.45

0.5

fraction of positive cases

adequately powered

underpowered

Power 0.9

Figure 1. Nomogram for known or expected HRs of

a risk model, fractions of patients identified as

high-risk, and numbers of events needed for a

power of 0.9. The practical implications of these

relationships can be exemplified as follows: validation

of the m7-FLIPI in a R-CVP–treated cohort (HR of

;3.6) requires fewer FFS events compared with a

R-CHOP–treated cohort (HR of ;2).41 Similarly,

a smaller number of events will be required if the

fraction of high-risk patients is approaching 0.5, for

example, as expected when analyzing only patients

with high-risk FLIPI.5

1494 WEIGERT and WEINSTOCK BLOOD, 28 SEPTEMBER 2017 x VOLUME 130, NUMBER 13

For personal use only.on October 2, 2017. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


progression.63 This suggests that low VAF mutations may be
prognostically relevant in FL as well, but a full analysis has
not yet been published. As noted in “Integrating multiple-gene
mutations into composite risk models,” mutations with VAF
,10% are not scored in the m7-FLIPI.

At the other end of the spectrum, some highly recurrent gene
mutations such as CREBBP and EZH2 are mostly clonal.19,20

Several publications have now established the concept of common
progenitor clones (CPCs), by identifying a set of shared gene
mutations in pairs of FL at initial diagnosis and at relapse and/or
transformed FL.20-22,52 As expected, these (inferred) CPCs were
enriched particularly for mutations in epigenetic regulators.
Conceptually, as CPCs give rise to relapsed and/or transformed
FL (mostly by divergent evolution), CPC-defining mutations
represent highly promising candidates for minimal residual disease
diagnostics (eg, using ctDNA) and as therapeutic targets.

Evolving evidence from transgenic models and patients suggests
that the sequence of mutation acquisition at different stages
of hematopoietic development has biological and clinical implica-
tions. In mice, genetic deletion of Crebbp and Kmt2d in early,
antigen-naive B cells led to a more pronounced phenotype
compared with inactivation at later stages, that is, in more mature
germinal-center B cells.28,29 We have previously shown that FL-
associated mutations can be acquired many years before patients
develop clinically apparent manifestations,64 with a subset of
mutations detectable in hematopoietic progenitor cells.65 In
Langerhans cell histiocytosis, for example, clinically aggressive/
high-risk disease arises from acquisition of the BRAF V600E
mutation in hematopoietic precursor cells, whereas indolent/low-risk
disease is driven by the identical gain-of-function gene mutation
acquired in more mature, tissue-restricted precursor cells.66

Gene mutations are only one component of
complex biological networks

Current targeted sequencing approaches undoubtedly do not com-
prehensively capture all biologically and clinically relevant gene
mutations,67 but there is likely to be a point of diminishing return that
has either already been reached or is rapidly approaching for common
lymphomas like FL. As new technologies are increasingly applied in
an unbiased manner to FL samples (eg, chromatin immunoprecipita-
tion sequencing, transcriptome, proteome, metabolome, or single-
cell analyses, and functional assays such as BH3 profiling68), these
orthogonal approaches could be added to traditional DNA sequencing
to improve prognostic models. Evolving evidence also suggests that
biologically relevantmutations are not restricted to the coding genome:
for example, mutations in regulatory elements have been shown to
disrupt transcription factor binding and to attenuate the expression
of their target genes.26 Mutant gene products have also been shown
to serve as neoantigens in FL, capable of eliciting specific T-cell
responses.69

Finally, the clinical impact of genemutationsmay also depend on
interactions with numerous other molecular alterations within the
malignant cells and with components of the microenvironment.70

For example, recurrent mutations in the DNA-binding site of STAT6
have been shown to amplify the interleukin 4 (IL-4)–induced JAK-
STAT signaling cascade.39,71 Thus, the biological and clinical
impact of STAT6 mutations is expected to heavily depend on the
abundance of follicular helper T cells, the major source of IL-4 in

the microenvironment of FL,72,73 and thusmaydiffer based on site of the
disease, activity of a particular treatment regimen against follicular
helper T cells, or even polymorphisms that affect IL-4 production and/
or signaling.

Gene-expression profiling has the potential to capture the net
“downstream” phenotype that results from these complex interactions,
both within the malignant cells and with its microenvironment.
Furthermore, proof-of-concept studies have demonstrated that im-
mune cell–derived gene-expression signatures can predict treatment
outcome,74,75 but due to technical challenges and methodological
concerns76 this concept has not yet been translated into the clinics.
Improved assays, such as the nCounter technology (NanoString)
now allow robust and reliable gene-expression profiling from
challenging formalin-fixed paraffin-embedded biopsy specimens,
and are increasingly applied to various cohorts of patients with
FL.77 It will be interesting to see if integration of prognostic gene-
expression signatures into multivariable risk models will add to or
even substitute for gene mutations for improved patient stratifi-
cation in FL.

From risk-adapted to biology-guided
treatment strategies

Unlike conventional cytotoxic chemotherapies, the response to molec-
ular targeted therapies may be particularly predictable based on single-
gene mutations. For example, mutant EZH2 confers a gain of function
and thus may be a promising target for inhibitors of this enzyme.34

An interim analysis of an ongoing phase 2 trial of the EZH2 inhibitor
tazemetostat in patients with relapsed lymphoma was presented at the
14-ICML: in 67 evaluable patientswithFL, theoverall response ratewas
92% for patients with EZH2-mutant tumors (12 of 13), as compared
with 26% for patientswithout detectableEZH2mutations (14 of 54).78

Thus,EZH2mutations were highly predictive of response but.50% of
responders did not have EZH2 mutations. The latter may be related to
EZH2 amplification43 or other alterations like ARID1Amutation, which
can synthetically confer lethality with EZH2 inhibition.79,80 However,
as mentioned earlier, EZH2mutations are also predictive of favorable
outcome after immunochemotherapy.41,43,45 This example illustrates
that it remains to be determinedwhether molecular targeting strategies
represent an advance onwhat could be seenwith standard therapy, and
whether their role will be to add to rather than replace conventional
treatment approaches.

The obverse example is BTK inhibition, which is highly active
against some B-cell lymphomas but only modestly active in FL.81

Interestingly, a number of gene mutations recurrently found in FLmay
confer ibrutinib resistance, such as NF-kB–activating mutations like
CARD11 or TNFAIP3, or mutations in CXCR4 that activate AKT and
ERK signaling.82,83 Thus, predictive algorithms that apply to regimens
containing targeted therapies may require individualization; whether
these can be established by modifying the existing algorithms like the
m7-FLIPI or will require starting “from scratch” is unclear.

A vision for prognostic and predictive
model development

The biggest challenge for any biomarker is to demonstrate clinical
utility. We face a status quo where few if any biomarkers are used to
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drive treatment selection for patients with FL, despite the fact that
massive data sets have been and continue to be accumulated from
clinical trial patients and registries. To some extent, this is simply
because novel agents are brought into trials at a pace that exceeds the
ability to validate prognostic or predictive models within prospective
clinical trials. As an example, by the time that data on rituximab plus
CHOP or CVP (R-CHOP and R-CVP) regimens were mature enough
for us to formulate them7-FLIPI, the standard treatment of patientswith
advanced FL had switched to R-bendamustine at many centers.

How can we speed the pace of biomarker development and
validation so that patient selection canmove in parallel with therapeutic
development?Theremaynot be a definitive answer, but crowdsourcing
could be helpful. In this regard, the American Society of Hematology
(ASH) is establishing a Department of Registries with the goal of
tackling problems that require information technology–based solu-
tions. Patient, treatment, outcome, pathology, and genomic datawill all
be needed to make analyses most relevant to clinical application.
Additional efforts and funding are needed to systematically implement
comprehensive biobanking in clinical registries and trials. It will be
essential to harmonize and standardize methodological approaches,
as different DNA isolation protocols, different patient materials (eg,
lymph node biopsy, bone marrow aspirate, or cell-free DNA), and
different sequencing platforms may give disparate results. At the same
time, investigators should be able to upload raw data (eg, FASTQ files)
for analysis by a “standard bioinformatic pipeline” that is codeveloped
by leaders in the field, iteratively improved under the auspices of an
organization like ASH, and made available open source. This would
help overcome much of the variability in analysis that currently affects
sequencing efforts while extending more sophisticated bioinformatic
analysis to investigators who currently lack access to it. One could
envision computer scripts written in open-source language that are
freely available from ASH. These scripts would be applied directly to
clinical trial data (extant and future) in real time to either establish the
most promising (clinicogenetic) riskmodel from a particular data set,
or to assay existing algorithms against the data set and determine the
most robust assay. All of these analyses would be centrally housed
at ASH or with a similar honest broker so that researchers could

immediately understand the performance of an individual risk model
across diverse populations of either clinical trial–based or registry-
based patients.

The major questions that remain in FL treatment (Table 1) are
likely to be answerable in the next 5 years with the right approach.
Much of the needed data already exists: an important step, as outlined
by others in the larger context of cancer genomic data,84,85 is to make
both the analysis of the data and the analysis of the analysis open to
everyone.
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