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Background: Clinical and Laboratory Standards Institute (CLSI)'s new guideline for statistical quality control
(SQC; C24-Ed4) (CLSI C24-Ed4, 2016; Parvin CA, 2017) recommends the implementation of risk-based SQC strate-
gies. Important changes fromearlier editions include alignment of principles and conceptswith the general patient
risk model in CLSI EP23A (CLSI EP23A, 2011) and a recommendation for optimizing the frequency of SQC (number
of patients included in a run, or run size) on thebasis of the expectednumber of unreliablefinal patient results. The
guideline outlines a planning process for risk-based SQC strategies and describes 2 applications for examination
procedures that provide 9-σ and 4-σ quality. A serious limitation is that there are no practical tools to help
laboratories verify the results of these examples or perform their own applications.
Methods: Power curves that characterize the rejection characteristics of SQC procedures were used to predict
the risk of erroneous patient results based on Parvin's MaxE(Nuf) parameter (Clin Chem 2008;54:2049–54). Run
size was calculated fromMaxE(Nuf) and related to the probability of error detection for the critical systematic error
(Pedc).
Results: A plot of run size vs Pedc was prepared to provide a simple nomogram for estimating run size for
common single-rule and multirule SQC procedures with Ns of 2 and 4.
Conclusions: The “traditional” SQC selection process that uses power function graphs to select control rules and
the number of control measurements can be extended to determine SQC frequency by use of a run size nomo-
gram. Such practical tools are needed for planning risk-based SQC strategies.

IMPACT STATEMENT
The new fourth edition of the Clinical and Laboratory Standards Institute (CLSI) guideline for statistical

quality control (SQC) focuses on the application of risk-based SQC strategies but lacks practical planning or

design tools. Themethodology outlined here will help medical laboratories select SQC strategies that limit

the risk of erroneous patient test results. Simple graphical tools—power function graphs and run size

nomograms—make it practical for laboratories to select appropriate control rules, the total number of control

measurements/event, and the number of patient samples between quality control events (or SQC frequency).
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The fourth edition of the Clinical and Laboratory
Standards Institute (CLSI)4 guideline on statistical
quality control (SQC)was published in 2016 (CLSI
C24-Ed4) (1, 2) and was recently discussed in this
journal (2). Earlier editions were published in 1991,
1999, and 2006 and have a long history of use in
medical laboratories. The new edition introduces
several important changes:

• “Alignment of principles and definitions to be
consistent with and to supplement the general
patient risk model described in CLSI document
EP23 (3);

• Introduction of additional performance mea-
sures useful for evaluating the performance
characteristics of a quality control (QC) strategy;

• A greater focus onQC frequency andQC sched-
ules as a critical part of a QC strategy;

• Expanded guidance on setting target values
and SDs for QC materials;

• A substantial chapter on recovering from an
out-of-control condition.”

The first 3 changes are concerned with the plan-
ning of a risk-based SQC strategy, which is defined
as “the number of QC materials to measure, the
number of QC results and the QC rule to use at
each QC event, and the frequency of QC events,”
more commonly called an SQC procedure. The last
2 relate to the proper application and implemen-
tation of SQC procedures in medical laboratories.
According to Parvin (2), the intention of the guid-

ance is to provide principles and definitions rather
than a specific approach, performance metrics, or
software tools: “[T]he objective…was to provide a
helpful roadmap for designing, assessing, and im-
plementing a statistical QC strategy that is consis-
tent with the patient risk concepts introduced in

CLSI EP23. C24 does not recommend a specific QC
strategy for any individual device or technology.
Likewise, while a number of the QC performance
metrics discussed in the document require com-
puter software to compute, the guideline neither
makes recommendations nor gives examples of
the use of any specific software”.
Our purpose here is to consider the practical

details of implementing the roadmap for selecting
control rules, number of control measurements,
and number of patient samples between QC
events (run size, SQC frequency) for an SQC strat-
egy. Our approachbuilds on theC24-Ed4 guidance
that recommends the use of Sigma-metrics for
characterizing the quality of an examination proce-
dure (4), power functions for characterizing the
performance of SQC control rules and number of
control measurements (5), and Parvin's MaxE(Nuf)
parameter for optimizing SQC frequency (6). The
recommended planning process extends an ear-
lier approach using a Sigma-metric SQC Selection
Tool (7) based on calculation of a process capability
index for the critical systematic error that must be
detected to maintain a defined quality require-
ment (8). This “traditional” planning process has
been adapted to include run size by considering
the relationship between the probability of detect-
ing the critical systematic error (Pedc) and Parvin's
MaxE(Nuf) patient risk parameter, as described by
Yago and Alcover (9) for single-rule SQC proce-
dures. Bayat (10) has evaluated those relationships
for multirule SQC procedures to support more
widespread applications for planning risk-based
SQC procedures. Although Yago and Alcover and
Bayat provide nomograms that can be used to se-
lect SQC procedures based on the relationship be-
tween the observed Sigma-metric vs MaxE(Nuf),
those nomograms do not consider the probability

DOI: 10.1373/jalm.2017.023192
© 2017 American Association for Clinical Chemistry
4Nonstandard abbreviations: CLSI, Clinical and Laboratory Standards Institute; SQC, statistical quality control; QC, quality control; Pedc, proba-
bility of error detection for critical systematic error; MaxE(Nuf), maximum number of unreliable final patient results before an out-of-control error
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for false rejection, which is an important design
parameter incorporated in the traditional design
approach that uses power function graphs.

METHODS AND MATERIALS

Performance characteristics of SQC
procedures

SQC procedures have been traditionally se-
lected through the evaluation of power function
graphs (8, 11) that describe the probability of rejec-
tion on the y axis as a function of the size of the
error (ΔSE for systematic error) on the x axis. The
size of the systematic error that is critical for detec-
tion, ΔSEcrit, can be calculated as [(ATE − bias)/SD] −
1.65, inwhich 1.65 corresponds to a 5% risk that an

individual test result will exceed the defined ATE.
The x axis of a power function graph can also be
scaled directly in terms of a Sigma-metric, which is
calculated as (ATE − |bias|)/SD when concentra-
tion units are used or (%ATE − |%bias|)/%CV for
percentage units; therefore, the Sigma-metric cor-
responds to ΔSEcrit + 1.65 (4).
Fig. 1 shows a set of power curves that are com-

monly of interest when 2 levels of controls are an-
alyzed. The curves in these figures correspond
from top to bottom with the list of SQC rules and
number of control measurements (N) shown (top
to bottom) in the key at the right side of the graph.
Typically, the critical systematic error (ΔSEcrit) is cal-
culated and a goal of 0.90 is set for the probability
of error detection (Ped) and a goal of ≤0.05 (as low

Fig. 1. Power function graph for 2 levels of controls.
Probability of rejection is plotted on the y axis vs the size of amedically important systematic error (ΔSEcrit) on the lower x axis
and vs the Sigma-metric on the upper x axis. Power curves (top to bottom) correspond to the control rules and total number
of control measurements/event (top to bottom) in the key at the right. Pfr in the key corresponds to the y intercept of the
power curve. Ped corresponds to the probability of error detection that is assigned once additional planning parameters have
been specified, e.g., the specification for the ATE and the bias and imprecision observed for the measurement procedure. N
corresponds to the total number of control measurements/event made on the same or different levels of controls. R
corresponds to the number of runs in which the control rules are applied, which is 1 when all the rules can be applied in an
individual run, but it may be higher if rules require more control measurements than available in a single run.
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as possible) for the probability of false rejection
(Pfr) to assess the suitability of different control
rules and different numbers of control measure-
ments. Yago and Alcover (9) use the term Pedc to
represent the probability of detecting the critical
systematic error.

Risk prediction for SQC procedures

The risk of patient harm is related to the errone-
ous test results that are reported when analyzing
patient samples. C24-Ed4 describes this as “the
expected number of unreliable final patient re-
sults”. This expression is based on Parvin's defini-
tion of a parameter MaxE(Nuf) that represents the
“maximumexpected increase in the number of un-
acceptable patient results reported during the ex-
istence of an undetected out-of-control error
condition” (6). In short, these are increased defec-
tive results that may be reported, although con-
trols are being analyzed. The number of defects
depends on the quality required for intended use
(ATE, TEa), precision and bias of the examination
procedure, control rules and number of control
measurements being used for SQC, and the num-
ber of patient samples in the analytical run (run
size, frequency of SQC). The calculation of the
MaxE(Nuf) risk parameter is complicated and re-
quires informatics support (12). However, a graphical
approach may be used to approximate MaxE(Nuf)
based on the relationship between MaxE(Nuf) and
Pedc as described for single-rule SQC procedures
by Yago and Alcover (9) and for multirule SQC pro-
cedures by Bayat (10). Then it is a simple matter to
calculate run size and prepare a run size nomo-
gram for different SQC procedures.

Run size nomogram

To develop the nomogram, the example condi-
tions represented an HbA1c examination proce-
dure in which ATE was 6.0%, CV was 1.0%, and bias
varied from 0.0% to 3.5% to change the Sigma-
metric from 6.0 to 2.5. Pedc and MaxE(Nuf) were

calculated from Excel spreadsheets, and those re-
sults were used to prepare the nomogram. Run
size was calculated as 100/MaxE(Nuf) in accor-
dance with Parvin's model, in which QC events
bracket 100 patient samples (i.e., M = 100). Such
nomograms can be developed whenever com-
plete power curves are available for the candidate
SQC procedures of interest.

Approach for planning risk-based SQC
Procedures

1. Define the quality required for intended use in
the form of an ATE.
2. Determine the precision (SD, CV) and trueness
(bias) of the examination procedure from experi-
mental data.
3. Calculate the Sigma-metric as (ATE − bias)/SD for
concentration units or (%ATE − %bias)/%CV for
percentage units.
4. Assess the probability for false rejection (Pfr)
from the y intercept of the power curves and the
probability of error detection (Ped) from the inter-
section of the power curves and the observed
σ-metric or critical-sized systematic error.
5. Select control rules and the total number of con-
trol measurements to achieve a probability of er-
ror detection (Pedc) of ≥0.90 and a probability of
false rejection (Pfr) as low as possible.
6. Convert the observed Pedc to the maximum
run size (or frequency of SQC) using a run size
nomogram.
7. Consider other practical factors that will affect
the frequency of SQC, and shorten the run size, as
necessary, to provide both an effective and effi-
cient quality management process.

RESULTS

Fig. 2 provides a run size nomogram for single-
andmultirule SQC procedures with 2 and 4 control
measurements per event (N, total number across
levelsof controls). The xaxisdescribes theprobability
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of detection for the critical-sized systematic error
(Pedc), which would be determined for the selected
SQC rules andN/event fromapower function graph.
The y axis shows run size, which is the number of
patient samples between QC events, calculated as
run size = 100/MaxE(Nuf). The logarithmic scale
spreads the data around Parvin's suggested Max-
E(Nuf) goal of 1.0, which corresponds to a run size of
100. The different lines correspond to different SQC
procedures, as shown in the key at the right side of
the figure. The highest line is for 13s with n = 2 (SR2),
the next lower line for 13s/22s/R4s with n = 2 (MR2),
then 13s with n = 4 (SR4), and finally (lowest line) 13s/
22s/R4s/41s with n = 4 (MR4).

Note that for aMaxE(Nuf) goal of 1.00, which cor-
responds to a run size of 100 under the conditions
of the risk model, these common single- and mul-
tirule procedures provide a Pedc of 0.76–0.86;
thus, any SQC procedure that is designed to
achieve a Pedc of ≥0.90 will achieve Parvin's goal for
lowpatient risk. A higher Pedc will allow laboratories
to increase the run size, e.g., a Pedc of 0.90 would
correspond to maximum run sizes from approxi-
mately 150–300 patient samples, depending on
the particular SQC procedure selected. In contrast,
a lower Pedc will lead to smaller run sizes, e.g., a Pedc
of 0.60 leads to run sizes of about ≤40 and a Pedc
<0.50 leads to very short run sizes of about ≤25.

Fig. 2. Runsize on yaxis is plotted vsprobability of error detection for the critical systematic error (Pedc)
on the x axis.
Run size is calculated as 100/MaxE(Nuf) and represents the number of patient samples between 2 QC events. Lines, top to
bottom, are identified in the key at the right. SR2 refers to 13s with n = 2;MR2 is 13s/22s/R4s with n = 2; SR4 is 13s with n = 4;MR4
is 13s/22s/R4s/41s with n = 4.

Planning Risk-Based SQC Strategies ARTICLES

September 2017 | 02:02 | 211–221 | JALM 215

..............................................................................................................



DISCUSSION

The frequency of SQC became a major issue
in laboratory practice when the Centers for
Medicare and Medicaid Services published the
Final CLIA Rule in 2003 (13) and introduced equiv-
alent quality control as an option for compliance in
the Interpretive Guidelines found in the Centers
for Medicare and Medicaid Services' State Opera-
tionsManual. Equivalent quality control (or EQC, as
it was known) allowed a laboratory to perform cer-
tain validation experiments and then reduce the
frequency of SQC to once per week or even once
per month. However, those experiments were not
scientifically valid; for example, a stability study
over 10 days was used to justify reducing SQC fre-
quency to once every 30 days. That shortcoming
(along with others) eventually led the Centers for
Medicare and Medicaid Services to replace equiv-
alent quality control in January 2016 with risk-
based individualized QC plans (now known as
IQCP). That change in regulations makes the guid-
ance from the new edition of the CLSI C24-Ed4
document critical for SQC practices today.
Keyguidance inC24-Ed4 is todefine the frequency

of SQC on the basis of the number of patient sam-
ples analyzed between 2 QC events, i.e., bracketed
QC.AQCevent is the termused for “theoccurrenceof
one or more QCmeasurements and a QC rule eval-
uation using theQC results”. For bracketedQCoper-
ation, the number of patient samples, or frequency
of SQC, is supposed to be determined by the risk of
harm to patients if erroneous results are reported,
which can be estimated by calculating Parvin's Max-
E(Nuf) parameter (6). The practical problem for labo-
ratories is that this calculation is complicated and
requires specialized informatics support (14).
As an alternative, Yago and Alcover (9) provided

a rule selection nomogram that relates MaxE(Nuf)
to the observed Sigma-metric of an examination
procedure and the performance of different
single-rule SQC procedures. Bayat (10) has ex-
tended that approach for multirule SQC proce-

dures. Another alternative, shown here, is to
extend the traditional SQC design approach and
determine the frequency of SQC using a run size
nomogram that relates the number of patient
samples between QC events to Pedc, the probabil-
ity of error detection for the critical systematic er-
ror that needs to be detected by an SQC
procedure. Pedc is an SQC planning parameter that
has been used for many years in the traditional
approach that uses power function graphs for se-
lecting control rules and the total number of con-
trol measurements/event (15).
An application is illustrated in Fig. 3 for an exam-

ination procedure having 4-σ quality (or 2.35s crit-
ical systematic error). The traditional goal has been
to achieve a Pedc of 0.90 with a Pfr as low as possi-
ble. Pfr is evaluated from the y intercepts of the
power curves, and the estimates are shown in the
first columnof the key at the right of the figure. Pedc
is evaluated at the intersection of the perpendicu-
lar line and the power curves for the different SQC
procedures, and estimates are shown in the second
column of the figure key. A 13s/22s/R4s multirule SQC
procedure having 2 controls/event would provide
a Pedc of 0.59, whereas a Pedc of 0.91 could be
achieved with a 13s/22s/R4s/41s multirule proce-
durewith 4 controls/event. Fig. 4 shows how to use
the run size nomogram to determine the appropri-
ate number of patient samples between QC
events. Themaximum run size is determined to be
approximately 40 patient samples for the n = 2
multirule procedure and approximately 170 pa-
tient samples for the n = 4 multirule procedure.
This application corresponds to the 4-σ example

that appears in the C24-Ed4 document, in which
the recommendation is “a candidate strategy us-
ing 13s, 22s, 41s, and R4s together with two QC
concentrations at every QC event” (1, p. 44). It is
not clear whether N should be 2 or 4, although
inclusion of the 41s rule suggests that N be 4. A run
size of 125 is recommended but does not corre-
spond to either of the estimates above. The run
size of 125 seems to come from the earlier
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proposed edition of the C24 document that rec-
ommended a 13s/2 of 32s/R4s/31s multirule with 3
levels of controls. Thus, the control rules and N
have changed in the final document, but the run
size remains the same. Some clarification of this
example was provided in December 2016 when
CLSI issued an editorial omission that corrected
the SQC recommendation to read “A candidate
strategy is using 13s, 22s, and R4s rules together
with two QC concentrations at every QC event”
(16). That correction not only removes the ambigu-
ity about the control rules and number of control
measurements/event that are recommended (n =
2), but also makes it clear that the recommended
run length of 125 is wrong or, at best, arbitrary
rather than objective. Use of a multirule SQC
procedure with 4 control measurements/event
would be more appropriate and would justify a
run size of 125 patient samples.

Examination procedures with higher Sigma-met-
rics (better quality) would permit simpler SQC proce-
dures (single rules, lower N) and allow larger
maximum run sizes, e.g., Pedc could approach 1.00
for a 6-σ process for a 13s n = 2 SQC procedure, or a
13s/22s/R4s SQC procedure with n = 2, both of which
would allow maximum run sizes of at least 250 pa-
tient samples. This assessment is consistent with the
9-σexample shown inC24-Ed4, inwhich a run size of
200 is recommended.Other practical factorsmay, of
course, impose smaller run sizes and must be care-
fully consideredwhendefining thefinal SQCstrategy.
It is also apparent that examination procedures

with low Sigma quality cannot be adequately con-
trolled by SQCprocedures tominimize patient risk.
Industrial guidelines suggest that processes with
lower than 3-σ quality are not suitable for routine
service because they cannot be adequately con-
trolled. An essential part of risk management

Fig. 3. Determination of Pedc for an example examination procedure having a Sigma-metric of 4.0 or a
critical SE of 2.35*SD.
Power curves (top to bottom) correspond to the control rules and total number of control measurements/event (top to
bottom) in the key at the right. Pfr in the key that corresponds to the y intercept of the power curve; Ped corresponds to the
intersection of the vertical line with the power curve. The multirule SQC procedure with n = 2 shows Pedc of 0.59, and the
multirule SQC procedure with n = 4 shows Pedc of 0.91.
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should be the validation of safety characteristics,
such as precision and bias, to ensure they satisfy
the requirements for intended use (e.g., ATE); thus,
the selection and validation of methods are critical
in a medical laboratory, and the prerequisite to
implementation should be of a quality better than
3-σ. Methods having low Sigma quality will require
well-trained operators, rigorous adherence to a
manufacturer's directions for use and preventive
measures, frequent control, short run lengths, and
thorough corrective actions with an emphasis on
elimination of error sources and failure modes.
A prerequisite for these graphical tools, as well

as the calculation of MaxE(Nuf), is the availability of
information about the rejection characteristics of

SQC rules. SQC rules are essentially statistical tests
of significance whose performance characteristics
can be determined on the basis of the probability
theory for simple single-rule procedures. For com-
binations of rules, computer simulations have
been performed to describe the probabilities for
rejection under different error conditions (5) and
have been available in the literature for decades
(17). C24-Ed4 recommends somenew SQC rules—
81s, 61s, 101s—whose power curves have not been
explicitly documented. These rules are described
as having been empirically evaluated (17) based on
a set of glucose data that is included as Fig. 2A in
C24-Ed4. According to Miller and Nichols (18), such
empirical validation is the basis for a recommendation

Fig. 4. SQC planning application for an examination procedure having 4-σ quality.
For a 13s/22s/R4s n = 2 multirule SQC procedure (MR2, second from top line), Pedc is 0.59 and the corresponding run size is
approximately 40 patient samples. For a 13s/22s/R4s/41s n = 4multirule procedure (MR4, bottom line), Pedc is 0.91 and the run
size may be as large as approximately 170 patient samples.
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of a 13s/22.5s/R4s/81.5s multirule procedure “based
on the clinical requirements for patient care, the
observed long-termmethodperformance, and the
need to identify potential method issues with a
false alert rate ≤1%”. Note the introduction of 2
additional new control rules—22.5s and 81.5s. Inter-
estingly, the set of glucose data shows an SD of
about 4mg/dL at a concentration of 273mg/dL, or
a CV of about 1.5%. Given the CLIA criterion of 10%
for acceptable performance in proficiency testing
and assuming no bias, the Sigma-metric would be
10%/1.5% or 6.7. Such a method could be ade-
quately controlled by a 13s control rule with n = 2,

as shown by its power curve in Fig. 1. That obser-
vation suggests that the introduction of new con-
trol rules should require proper performance
characterization of their power curves, both as sin-
gle rules and as particular combinations recom-
mended for multirule procedures.
It is also possible to develop nomograms that

relate run size directly to the observed Sigma-
metric by substituting run size for MaxE(Nuf) in the
graphical relationships shown by Yago and Alcover
(9) and Bayat (10). Such nomograms are simpler in
principle because they eliminate the need for de-
termining Pedc; however, they risk overlooking the

Fig. 5. Sigma-metric run size nomogram, in which run size is plotted on the y axis vs the observed
Sigma-metric on the x axis.
Maximum false rejection probability is 0.03 or 3% for the included SQC procedures. The different lines, from left to right,
correspond to 13s/22s/R4s/41s with n = 4 (MR4, Pfr = 0.03), 13s with n = 4 (SR4, Pfr = 0.01), 13s/22s/R4s with n = 2 (MR2, Pfr = 0.01),
and a 13s with n = 2 (SR2, Pfr = 0.00).
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false rejection characteristic of the SQC proce-
dure. The prerequisite for such run length vs
Sigma-metric nomograms should be the elimina-
tion of high Pfr procedures, as per the example
shown in Fig. 5, where all the SQC procedures have
Pfr values of ≤0.03 or 3%. For a 4-σ process, similar
run lengths can be determined, e.g., approxi-
mately 40 for the n = 2 multirule procedure and
approximately 180 for the n = 4 multirule proce-
dure. Ultimately, such Sigma-metric run size no-
mograms are simpler and may be preferred, but
analysts should appreciate the underlying require-
ment for power curves for the SQC procedures.
In conclusion, thereareserious limitationswith the

guidance fromthenewCLSIC24-Ed4document. The
lack of practical tools to support the planning of risk-
based SQC procedures, as well as the lack of perfor-
mance characteristics for some new control rules
that are proposed, is a problem. Other issues, such
as the practicality of bracketed QC for continuous
operation and result reporting, may also be prob-
lematic for laboratorypractice. Even if theguidance is
intended to only emphasize principles and provide a
roadmap for risk-based SQC strategies, it leaves lab-
oratories without sufficient direction to implement
the recommended practices.

International standards, such as ISO 15189 (19),
typically provide high-level guidance that sets re-
quirements for what to achieve without describing
how to do it. For example, ISO 15189 requires that
“the laboratory shall design quality control proce-
dures that verify theattainmentof the intendedqual-
ity of results,” but does not describe how to
accomplish this. CLSI documents typically fill the gap
between the “what to achieve” and “how to do it,” but
that is not the case for C24-Ed4. The recommended
SQC planning approach cannot be implemented
solely on the basis of the guidance provided in the
document. Simple graphical tools, such as Yago and
Alcover's MaxE(Nuf) nomogram for single-rule SQC
procedures (9) andBayat'sMaxE(Nuf) nomogram for
multirule SQCprocedures (10), offer alternatives, but
they may be limited because the probability of false
rejection is not included as a planning parameter.
That limitation can be overcome by extending the
traditional SQC planning approach based on power
curves and adding run size nomograms to deter-
mine SQC frequency, as described here. We hope
and expect otherswill also develop new tools to sup-
port the planning of risk-based SQC strategies.
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